PREDICTION OF LIFTING SURFACE FLUTTER AT
SUPERSONIC SPEEDS'
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By H. AsHLEY*, W.J, MykyTtow**, J,R, MARTUCCELLI

Summary—Accumulated evidence indicates that, for many low-aspect-ratio lifting sur-
faces and for mission profiles typical of many present-day aircraft, flutter may be a
serious design problem at supersonic as well as at transonic speeds. Following a dis-
cussion of the effects of aerodynamic heating, measured flutter speeds and frequencies
are presented for a related series of uniform, cantilevered rectangular wings at Mach
numbers between 1.5 and 5.0. The remainder of the paper is devoted to various attempts
at rational theoretical prediction of the experimentally determined eigenvalues. It is
found that a two-degree-of-freedom representation based on free vibration modes
of a uniform beam-rod is suitable for establishing equations of motion, but that the
aerodynamic derivatives must be properly chosen for each particular speed range.
One significant conclusion is that basic supersonic flutter theory has now received the
same degree of confirmation that has long existed for straight wings of large span in
incompressible flow.

SYMBOLS

a Ambient speed of sound in air

b Reference semichord of lifting surface (constant for the
rectangular wings analyzed below)

c=1zb Chordlength of lifting surface

hy Amplitude of (positive downward) bending oscillation of
elastic axis at wingtip

I, Mass moment of inertia in pitch about elastic axis, per
unit span, at reference station on lifting surface

(JG)rer Torsional rigidity at reference chordwise cross section of

lifting surface
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m Mass per unit spanwise distance at reference station on
lifting surface

M = Vl/a Flight Mach number

q=3ipV? Flight dynamic pressure

V, =} I,/mb* Radius-of-gyration parameter

t Maximum thickness of airfoil section at reference station
on lifting surface

V Flight speed or test-section flow speed in wind tunnel

Ve Lowest speed for neutral dynamic aeroelastic stability
(flutter) of lifting surface

Wy Piston velocity

a, Amplitude of (positive leading-edge upward) torsional
oscillation of wingtip

¥y Ratio of specific heats in air

p= T;nﬁ Mass ratio

0 Ambient density in air

G, Phase angle by which wingtip bending oscillation leads
torsional oscillation

w Circular frequency of simple harmonic motion

Wy Circular frequency for neutral dynamic aeroelastic stability
(flutter) of lifting surface

Wy, Frequency of fundamental mode of coupled bending vi-
bration of wing

w, Frequency of fundamental mode of coupled torsional vi-

bration of wing
Effective frequencies of uncoupled modes, calculated as
described under Presentation of Data
0O(...) Identifies a quantity of the same or smaller order of mag-
nitude than (...)

wkes wae

INTRODUCTION

IT is not difficult in the year 1960 to make a strong case for the need of
accurate theory capable of predicting lifting surface flutter throughout
the supersonic flight regime. Up to approximately 1945 the structural
rigidity required to meet strength or static load criteria was generally more
than adequate to prevent dynamic aeroelastic instability on fixed wings
and tails (although the same could not be said about the trailing-edge
controls and tabs of that era). But subsequent progress in aerodynamics
and propulsion, coupled with the reduced thickness ratios permitted by
improved materials and techniques of structural analysis, produced
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a steady increase in the ratio of flight dynamic pressure to stiffness to the
point where satisfactory strength no longer assured freedom from flutter.
Flutter prevention therefore became an important design considera-
tion; new criteria and procedures were necessary.

The requisite information has gradually been supplied from a com-
bination of analytical and experimental research. For transonic speeds,
emphasis had to be placed on the reduced-scale model approach. A suit-
able theory was lacking at the same time that this range was recognized
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F1G. 1. Experimentally determined flutter stability boundaries, on a plot of

dimensionless velocity index ijbw,zl/ﬁ vs. Mach number, for cantilever model

wings of three different planforms. Constant altitude flight is represented by a
straight line through the origin. (Adapted from Garrick‘".)

as being critical from the standpoint of flight safety. Model tests, sup-
plemented by semi-empirical analyses, ultimately supplied the data to
establish the flutter boundaries, the margins of safety, the changes fre-
quently needed to prevent instability and, in some cases, the optimum
aircraft design from considerations of flutter. Extensive investigations
had to be conducted on certain transonic configurations, such as fixed
surfaces of very low thickness ratio, T-tails, mass-unbalanced control
surfaces, wings with external stores and all-movable controls.
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To illustrate current trends, the stability boundaries of Fig. 1 have
been adapted from Garrick!. These curves are typical of what can be
constructed from the large quantities of data now available near and
above Mach number unity (e.g. Lauten and Burgess®). They show, for
instance, that the particular swept wing chosen here is critical at transonic
speeds; if no flutter occurs up to M =1, it can proceed safely far into
the supersonic range, even at constant altitude.

Throughout the present paper we use the velocity index V,/bw, ) 1 as
a measure of the tendency to flutter. The changes in this index near
M =1 can be attributed to the variations in lift-curve slope and aero-
dynamic center as a wing accelerates from subsonic to supersonic flight.
The rapid rise of the velocity index or the supersonic alleviation is not
so great, however, as originally expected from zero thickness, linearized
aerodynamic theory. The unconservatism of linear theory, which was
pointed out by Ashley and Zartarian‘®, results primarily from a forward
shift of aerodynamic center due to profile shape and thickness. In Fig.
1, the stability boundaries for the two delta wings tend toward constant
values of velocity index at the higher M, this tendency being more pro-
nounced for the higher leading-edge sweep. It can be speculated :that
this behaviour results from the smaller variation of aerodynamic para-
meters with M as the aspect ratio is decreased. In any event, the imme-
diate transonic region is not necessarily the most dangerous for the deltas.
Thus, the relationship between the constant-altitude line and the boundary
for the 45°-planform indicates a critical range extending roughly from
M =1 to 1.5.1f this wing is designed to fly at appreciably greater g super-
sonically than transonically, the first encounter with flutter may be
distinctly supersonic. The same can be said for the 60°-delta, which dis-
plays an even wider range of M where instability could be met.

Although the foregoing examples are not all-inclusive, the data do
suggest that the supersonic regime may be a critical one for many low-
aspect-ratio surfaces. This statement is substantiated by the observation
that dangerous high-g regions at low altitudes may be avoided through
deliberately specified or accepted speed placards. Clearly the means must
be at hand for preventing flutter at supersonic speeds and, possibly for
some unique designs, at hypersonic speeds.

Flutter models may be employed to determine stability information
for specific configurations on a direct-analog basis, to develop trend data
of the sort presented in Fig. 1, or to assist in establishing and improving
the accuracy of procedures for theoretical prediction. It was with the
latter two objectives in mind that the measurements discussed in this
paper were carried out. These were conducted by the Aeroelastic and
Structures Research Laboratory, M.I.T., at the request of Wright Air
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Development Division, USAF, (1) to provide systematic data on a series
of similar models in the range of 1.5 << M < 5.0, and (2) evaluate the
accuracy of the supersonic analytical prediction technique known as ‘““pis-
ton theory”. This was a scheme adapted by M.LT. investigators from
earlier theoretical formulations of Hayes” and Lighthill'®, Such infor-
mation is required at a sufficiently early date to advance the “state of
the art” and to underwrite the design of advanced flight vehicles.

AEROTHERMOELASTIC EFFECTS

Before the experimental results are set down and compared with their
predicted counterparts, a few words are in order about the influence of
aerodynamic heating on supersonic flutter. At high speeds the destabi-
lizing effects of steady-state and transient heating on rigidities will re-
quire consideration not only because of their influences on frequencies
but also on frequency ratios. Garrick®™ describes results of a NACA
hot jet experiment on a solid bending-torsion model. This model fluttered
for a short interval primarily on account of loss in rigidity due to tran-
sient thermal stresses and the associated changes in frequency ratios and
frequencies. It was entirely stable, however, when injected into a similar
cold jet (see also Runyan and Jones'®),

The potential impact of aerodynamic heating on dynamic and static
aeroelasticity was early recognized and stimulated extensive research.
References (7,8,9) are a small sample of U.S. documents reporting
results of investigations. Dryden and Duberg!® describe an interesting
and complicated aerothermoelastic phenomenon involving significant
amounts of chordwise deformations. This “flag-waving flutter” occurred
during hot jet tests on a multiweb wing. Chordwise deformations will
very likely require much more attention in future designs.

At the present time, the general procedure in aeroelasticity is to sep-
arate the aerothermoelastic problem into two phases—the aerothermal
problem and the aeroelastic one. Bisplinghoff and Dugundji®® show
that such a procedure implies two assumptions, which are (1) small coup-
ling between heat transfer and elastic deformation, and (2) small coupling
between static and dynamic aerothermoelastic effects. However, these
M.LT. investigators also point out that dynamic coupling between aero-
thermal and aeroelastic aspects is unlikely, since thermal transient char-
acteristic times are generally long when compared to periods of struc-
tural vibration important to flutter.

Many investigators have proved that exact aerothermoelastic simu-
lation is not feasible except for a 1:1 model or replica. It should be
noted that, because of aerodynamic heating effects on moduli and
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changes in rigidities due to thermal stresses, the determination of the
experimental time scale must consider both aircraft and model histories.
That is, aerothermoelastic phenomena are a function of aircraft flight
path and maneuvers. While the rocket-model approach may appear to
give more realistic combinations of dynamic pressure and temperature
than the “non-heated” wind tunnel, the additional rocket propulsion
and aerodynamic performance similarity parameters required from flight
path considerations or the altitude-speed limit boundary may not permit
complete aerothermoelastic simulation. Nevertheless, the rocket-model
technique does present a means for obtaining high temperatures and
high dynamic pressures. Use of this experimental tool will likely be ex-
panded to obtain data for developing and improving both experimental
and analytical approaches in resolving flight vehicle aerothermoelastic
problems. Moreover, limitations on available stagnation temperature
render the continuous wind-tunnel even more deficient in this respect.

Calligeros and Dugundji®? evaluate similarity requirements up to
1000°F or about M = 3.5. They point out that the primary conflict
is between the Mach number, Reynolds number and pressure-structural
modulus ratio conditions. Of lesser importance are conflicts of charac-
teristic time, radiation and Frounde number effects. They also observe
that exact similitude is possible only for a 1:1 scale ratio. Three possible
approaches are discussed by the authors in detail:

(1) to use different materials and test media (gas) for the model;’
(2) to investigate special conditions by considering plate-like behavior;

and

(3) to relax one of the major conflicting requirements.

In the latter case, the Reynolds number condition is shown to be a
redefinition of the time scale. (See also Garrick'? for a similar discussion
on time sequence dissimilarity.)

In view of the similitude conflicts briefly mentioned above, it will be
necessary to employ restricted-purpose models and, in many cases, to
separate the aerothermal and aeroelastic phases of the problem. Never-
theless, as in the past, these models will be indispensable for investigating
special aspects of the various phases of the aerothermoelastic problem
area. Obviously such test results can be employed to provide data for
the development of theoretical approaches and to evaluate and improve
the accuracy of analytical prediction methods. In some cases, the model
may be used as an approximate analog of the full-scale vehicle. For the
“quasi-steady thermodynamic approach”, the effective stiffnesses, in-
cluding increases or reductions due to thermal stress, are estimated from
analyses and possibly test data and are specified as functions of time.
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A series of models is then constructed and tested to evaluate the more
critical ““time-frozen” conditions.

Considerable research is required to develop and to validate similarity
procedures in aerothermoelasticity, especially with reference to relaxation
of conflicting similarity requirements. Rocket model tests will provide
significant information on combined high heating and aerodynamic
pressure effects. However, here again conflicts in similarity will likely
require tests with different geometric scale ratios. It is probable that exact
or nearly exact simulation by ground facilities and reduced scale models
will not be possible. Thus, an accurate validation of the various step-by-
step phases of the separation technique will be required. The final model
tests might involve some limited combined environmental tests either
in a heated wind tunnel or by means of rockets. A decrease in the extent
of exact similarity will of course emphasize the importance and the need
for the flight flutter test. Here again the question of the influence of flight
path must be evaluated. In addition to the effort needed in the area of
aerothermoelastic similitude requirements, considerable research and
development are needed in connection with the design, construction and
testing of both static and dynamic aerothermoelastic models.

The above-mentioned effects of airplane flight path or history on flutter
characteristics have been investigated by California Institute of Techno-
logy for specific cases under United States Air Force Contract AF33
(616)-5767. The results, reported by Harder et al."®, cover analytical
studies of a hypothetical straight wing in the speed-altitude region M = 3
at sea level to M = 5 at 50,000 feet. One analog computation concerned
a long flight at M = 5 and 50,000 feet followed by a reduction in speed
to M = 1.5, an M = 1.5 dive to sea level, and an acceleration to M = 3.0.
This maneuver was sufficient to lose a considerable “cold-wing” margin
of safety. Flutter of the hypothetical wing resulted at sea level as M = 3.0
was reached. The loss in torsional rigidity was due to a reduction in elastic
moduli caused by “hot soak’ at high altitude and to detrimental thermal-
stress effects from the low-altitude acceleration to M = 3.0. The influence
of vibration amplitude on effective rigidities and flutter stability was not
investigated.

The research discussed in the following sections concerns tests in an
unheated tunnel and thus no aerothermal effects are included.

PRESENTATION OF DATA

Very little experimental information on flutter at distinctly supersonic
speeds is to be found in the literature, particularly for M = 3 and above.
An important exception is the NACA Research Memorandum by Runyan
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and Morgan"®, which shows a reasonable agreement between piston
strip-theory calculations and measured stability-boundary locations at
M =3 and 7 for 11%-thick double-wedge and 49;-thick truncated-
double-wedge wing models. Although these correlations for these limited
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FiG. 2. Values of V,-,’bw,efﬁ and wy/w,, vs. Mach number measured on canti-
lever, half-span models of square planform and 4-%-thick, truncated double-
wedge profile shape. Other model parameters typical of current practice.

cases suggest optimism regarding the theory, extended research involving
systematic variations of Mach number and other wing properties still
appears to be desirable.

Figures 2-4 summarize the result of the test program, which was
designed to supply such systematic information regarding the effects
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of the parameters M, thickness ratio, t/c, and aspect ratio. The other
dimensionless characteristics of model wings were held constant as nearly
as possible, and are typical of current practice. Further details are reported

by Martuccelli®.
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profile shape at M = 3.0. Other model parameters typical of current practice.

The type of model construction employed was the metal spar balsa-
wood profile arrangement used in other flutter research programs carried
out at M.L.T.U®, The technique is inexpensive and yields structures which
display clearly defined beam-rod elastic characteristics and tend to flutter
in the cantilever, first bending-first torsion mode. The balsa gives the
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desired aerodynamic shape, and airloads are transmitted by it to an alu-
minum spar, whose thickness and width can be varied to control the
flexural and torsional rigidities of the model and whose chordwise location
fixes the elastic axis. Lead weights are distributed fore and aft of the spar
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FiG. 4. Values of Vf/bw,e ]/ u and wy/wg, vs. full-span aspect ratio measured

on rectangular, cantilever, half-span models with 4%-thick, truncated double-

wedge profile shape at M = 3.0. Other model parameters typical of current
practice.

in such a way as to give the desired mass, mass unbalance, and radius
of gyration. Model instrumentation consists of two strain-gage bridges,
which supply information on bending and torsional strains at the root.
The gages are suitable for quantitative measurement of frequency and
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damping of the aeroclastic modes during zero-airspeed vibration tests
and measurement of frequency during the flutter determinations.

The wind tunnel tests were performed in Tunnel E-1 of the Gas
Dynamics Facility, USAF Arnold Engineering Development Center,
Tullahoma, Tennessee. Tunnel E-1 is an intermittent-flow facility with
a Mach number range of 1.5 to 5.0. The problem of the starting and
stopping shock loads was avoided by injecting the model into the
airstream after the starting shock had passed the test section and, when
required, by retracting the model before stopping the tunnel. Flutter was
obtained by increasing stagnation pressure (density-variation method) at
fixed M.

Models incorporating a basic set of dimensionless parameters were
tested at each half-Mach number in the operating range. These were
half-span, wall-mounted, cantilevered wings with square planform (full-
span aspect ratio 2.0 because of the aerodynamic and structural symmetry).
Properties were uniform in the spanwise direction. The basic profile shape
was that of a truncated, double wedge with a thickness ratio of, per
cent.

The effect of Mach number on the flutter index Vi/bw, | u and
frequency ratio wg/w,, for the basic models is shown in Fig. 2. Circular
frequency o,, is the effective frequency of the “uncoupled” fundamental
torsion mode in vacuo, as calculated from cantilever free-vibration equa-
tions using the measured frequencies of the first two inertially coupled
modes of the model. The influence of thickness ratio at M = 3.0 was
determined by testing models similar to the basic configuration but with
thickness ratios of 3, 4, 6 and 8 per cent. The results are shown in Fig. 3.
Finally, the importance of three-dimensional flow at M = 3.0 was assessed
by test results from four related similar basic models with /¢ = 4% and
full-span aspect ratios of 1, 2, 3 and 4 (Fig. 4).

At least two positive measurements of flutter eigenvalues were made
on separate models at each Mach number except 2.5 and 3.5, including
a total of 5 at M = 3.0 on the basic configuration. The curves in Figs.
2-4 were faired through these data points, fitting quadratic parabolas
to them by means of a least-squares procedure. This process yielded a
reasonable representation in all cases except the ‘”f/“”ﬂc curve of Fig. 4,
which had to be drawn by eye centrally through the data. A careful anal-
ysis of all significant sources of experimental inaccuracy was carried
out to determine the probable error of the measurements. This estimate
was confirmed by placing a band of width equal to the experimental error
around each of the curves; few individual points fall outside this band.
The largest deviations occur in the values of frequency ratio w/w, vs.
M (Fig. 2), but they do not invalidate the predicted error.

57
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COMPARISON BETWEEN THEORY AND EXPERIMENT

Assuming for the moment that the system has two degrees of freedom,
one in bending and one in torsion, a dimensional analysis of the complex
eigenvalue problem leads to the following conclusion: the dimensionless
flutter speed Vf/bw,e and frequency ratio cuf/co,,e for lifting surface with
fixed planform geometry and affine profile shapes are functions of mass
ratio p, structural frequency ratio @, /o, , Mach number M, thickness
ratio t/c, radius-of-gyration parameter I',, and the dimensionless chord-
wise locations of the elastic axis and center of gravity. This listing omits
the influence of structural friction, which was very small for all models
and, on theoretical grounds, would cause no more than a 1 per cent change
in any measured speed or frequency. The last three qualities in the fore-
going list were held within extremely close tolerances throughout the
program. M and f/¢ were varied in a prescribed fashion. A word must
be said, however, regarding the more significant variations in x and
wy, Jo,, from one test to another.

Owing to the fact that ambient density in the wind tunnel becomes
progressively lower as M is raised, the mass ratio p at flutter increased
by a factor exceeding 2 between the low and high ends of the speed scale.
Since this behavior seems unavoidable in any such experiments, it is
fortunate that a large amount of theoretical and experimental evidence
has been accumulated (e.g. Ashley and Zartarian*®) which shows, for
a variety of wings and modes of instability in the ranges of aeronautical
interest, that V, is almost exactly proportional to ],z_t That is, if
V_r/bm,e]’ﬁ is employed to describe stability boundaries, the mass ratio
can be dropped from the enumeration of parameters above. On a similar
basis, @, turns out to be essentially independent of u.

As for the frequency ratio , /o, , the exigencies of model construc-
tion caused it to deviate up to 30% from the nominal value desired, the
higher ratios being associated with the lower Mach numbers. In the cal-
culations to be presented, the mean e, /o, for all models tested at each
M was inserted into the flutter equations corresponding to that M.
Inasmuch as the eigenvalues are not particularly sensitive to moderate
variations in this parameter about its nominal value, it is believed that
this difficulty has negligible effect on the soundness of the conclusions
reached below.

No effort is made here to reproduce details of flutter computation
procedures or unsteady aerodynamic theory, these subjects being well
covered in the literature to be cited. As a first, rather elementary attempt
at correlation with the data in Figs. 2-4, the characteristic determinant
was constructed by the Rayleigh-Ritz method, using generalized coordi-
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nates associated with the fundamental, uncoupled modes of flexural and
torsional vibration of a uniform cantilever (cf. Egs. (9-89) and (9-90)
of 7)), Running lift and pitching moment were taken from second-order
piston theory'®, without adjustment for induction or wingtip losses but
taking account of the actual profile shape and thickness. The neutrally
stable solutions are plotted in Figs. 5 through 7. Curves obtained by
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setting t/c¢ = 0 have been added to the velocity index plots of Figs. 5 and 7.
The serious unconservatism of the zero-thickness predictions confirms
the well-known® destabilizing influence of the forward shift in aerody-
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Fic. 6. Data of Fig. 3 compared with stability boundaries calculated using
two uncoupled modes of a uniform cantilever beam-rod and aerodynamic co-
efficients from second-order piston theory.

namic center proportional to the parameter Mit/c. For straight wings
of the general type represented here, the conclusion seems inescapable
that wholly-linearized aerodynamic derivatives are unsatisfactory for
estimating supersonic aeroelastic stability.
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Despite a tendency to be slightly unconservative, piston theory predicts
the location of the stability boundary of Fig. 5 to within the probable
experimental error for M > 3. The same is not true of the calculated
frequencies, although the apparent discrepancies between the cuf/w,,‘
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curves are magnified by a scale expansion which is roughly twice that
of the velocity-index scale. As might be expected, the greatest frequency
deviation is observed at the lowest M, where the validity of the theory
is seriously questionable.

It is a matter of common experience among aeroelasticians that fre-
quency o, is predicted less accurately by a given theory than speed V.
An even more sensitive index—but one that is rarely available—is the
flutter mode shape. During the present program, high-speed motion
pictures were taken of each test with the camera pointed very nearly along
the elastic axis. It was afterward discovered that rough measurements
of the bending and torsional amplitudes at the wingtip, and of the phase
angle ¢, by which the bending oscillation (positive downward) leads
the torsion (positive leading-edge up), could be extracted from the films.
In the table which follows, a representative sample is given of measured
and predicted values of ¢, and amplitude ratio h,/b, . The experimental
errors for these two quantities are estimated at + 10° and + 20%,
respectively. Nevertheless, the comparisons leave something to be desired,
especially at the higher M. It would seem that more use should be made
of careful determinations and correlations of experimental and analytical
mode shape data for a critical evaluation of flutter theories.

TABLE 1

Representative mode-shape data

‘ Experimental Theoretical
M |\ |
by | g | b |
= |
1.5 151 | o2 | 1ss ‘ 13.9°
20 1.28 13¥ | 170 i
3.0 ‘ 159 | 1124 | 90
4.0 1.50 ® | 092 | 59
5.0 J| 1.77 30° ' 092 | 41°

In view of the reasonably satisfactory agreement on speed and frequency
at M = 3.0 achieved for the basic model configuration, it is not surprising
that Fig. 6 displays correctly estimated trends of these two quantities
with varying thickness ratio. Regarding Fig. 7, the theoretical curves
are horizontal straight lines because none of the dimensionless system
parameters is changed when strip-type derivatives are employed and
the aspect ratio is varied in such a way as to keep wy, o, constant. In
actuality, the only significant influence of span comes about through
the changing fraction of the total plan area that senses the presence of
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the wingtip, and only for aspect ratios less than 2 is this appreciable. At
M = 3.0 a thin rectangular wing of aspect ratio 2 has 17.7% of its area
so affected and can be considered, for flutter purposes, as an aggregate
of two-dimensional airfoils. The reasons are discussed below.

When trying to improve a flutter theory, one must examine the approxi-
mate representations of both the structural and aerodynamic parts
of the coupled system. Free-vibration tests of the models give no cause
to suspect the assumption of beam-rod elastic behavior, but the use of
only two degrees of freedom in the equations of motion may be question-
ed. To meet this criticism, parallel computations based on the nominal
system parameters have been made which incorporate the following suc-
cessive dynamical refinements: three degrees of freedom, with the second
mode of uncoupled bending added; and an infinity of degrees of freedom,
as obtained by means of the “‘exact” solution of the uniform beam-rod
differential equations due to Goland"®, and Runyan and Watkins9,
With subscripts “2”, “3” and “co” identifying the respective solutions,
a typical set of flutter eigenvalues is set forth in Table 2. The aerodynamic
derivatives are taken from second-order piston-strip theory in all cases.
Since there is uncertainty about the third place after the decimal point
in some of these computations, the two-degree-of-freedom approximation
seems extraordinarily well justified. Care should be observed, however
when generalizing any such finding to other, more complicated systems.
In every case here, the mode which first became unstable is the one con-
nected with torsional vibration at zero airspeed and involves an almost-
pure admixture of fundamental bending and torsion. Throughout the
multi-degree-of-freedom solutions, no hint of impending instability in
other modes was found up to speeds much higher than V.

TABLE 2

Comparison between bending-torsion flutter speeds and frequencies calcu-
lated using two, three, and an infinite number of degrees of freedom in the
dynamical system

M Vs Wi | Vi Wfoo
- Vi Wra Vi wra
1.5 1.009 1.002 1.002 1.002
3.0 1.004 1.001 1.000 1.001
5.0 0.999 1.001 0.998 1.001

Aerodynamic refinements can be undertaken with two objectives: to
remove the restriction on piston theory to high values of M, which is
clearly not met down to M = 1.5; and to allow for three-dimensionality
of the flow. Landahl®®, Van Dyke®” and others have provided airload
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expressions for airfoils oscillating at lower supersonic Mach numbers
while retaining the all-important ingredient of nonlinearity. The first
of these theories is somewhat easier to apply, and the results of intro-
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Fic. 8. Data of Fig. 2 compared with stability boundaries calculated by three-
degree-of-freedom analysis using aerodynamic coefficients from second-order
piston theory, with and without the correction terms from Landahl®®,

ducing it into the modal flutter calculations are presented in Fig. 8. Lan-
dahl criticizes second-order piston theory on the grounds that it includes
effects 0(%/c?) while neglecting those which are 0(z/cM?®), thus implying
that t/c &> I/M3. For the 4%-thick profiles used in the present investiga-
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tions, this would strictly call for M =4, at least. The Landahl formula-
tion‘2? expands the velocity potential, pressure coefficient, etc., in increasing
powers of t/c and //M?>. His objections are quite well met by retaining
only the piston terms plus those 0(t/cM?), and this is what has been done.

The improved velocity-index curve of Fig. 8 can now be said to fall
within experimental error when M = 2. Once again, the agreement on
flutter frequency is less satisfactory. It is, nevertheless, much more uniform
throughout the Mach-number range.

To combine thickness effects with three-dimensional flow in an entirely
rational manner is not yet within the state of the art. Yet there is a
possibility, when the eigenvalues arec not excessively sensitive to the
thickness parameter (cf. Fig. 6), of adjusting linearized theory on a semi-
empirical basis. For instance, one may take the distributions of oscil-
latory pressure loading computed by means of supersonic aerodynamic
influence  coefficients ?>2®)  and supplement them by the term

W, ; : ; :
y(y4) M3 [dx al prior to integrating the generalized forces used
o0

in the flutter equations. The quantity dz,/dx represents the local chord-
wise slope of the semi-thickness distribution of the wing, and the term
itself is easily deduced from piston theory. Alternatively and less rigor-
ously, one can developed flutter curves from linearized computations, then
adjust the ordinates by the ratio between corresponding curves obtained
by two dimensional aerodynamics with and without the thickness effect.

The three-dimensional calculations without thickness, as expected,
yield a very unconservative prediction of flutter speed, the variation
with Mach number being not substantially different from the upper dashed
curve on Fig. 5. After a rough thickness adjustment of the latter type
discussed above, results are found which closely agree with the Landahl
curve on Fig. 8 but which are no nearer than it is to the measured speeds.
This lack of improvement at the lower end of the Mach number is due
to the fortuitous accuracy of the two-dimensional estimates, and three-
dimensional theory should certainly be used in other, more complicated
cases. The success of the Landahl method at M = 1.5 and 2 can be attrib-
uted here to the mutual cancellation of two errors of opposite sign. On
the one hand, the oscillatory loads drop off to zero as the wingtip is ap-
proached, but, on the other, what loads are present become more effective
in producing flexure-torsion instability by virtue of the forward displace-
ments of the sectional aerodynamic centers in the tip region.

CONCLUSIONS

For many classes of lifting surface and for mission profiles typical of
the operation of many modern aircraft types, flutter may be a serious
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design problem at supersonic as well as at transonic speeds. The paraboli-
cally shaped curve of critical velocity ¥, vs. Mach number in the super-
sonic regime, suggested for several years by theoretical studies on simple
wings, appears to be well justified by the experimental evidence.

With regard to rational methods of flutter prediction in the general
range 1.5 < M < 5.0, it seems fair to conclude that they have now received
the same sort of confirmation that was provided for the theory of sub-
sonic, bending-torsion flutter of straight wings by a series of investigations
in the late 1930’s %23 are good examples from the British and American
literature). As with all such statements concerning aeroelastic stability,
this conclusion is a tentative one, based on tests with a single structural
configuration in which several of the many important parameters had
fixed values throughout. It must be emphasized that cases can be con-
structed where the eigenvalues are extremely sensitive to a certain para-
meter and where no theory can ever be successful. Such is the situation
on an unswept wing when the frequency ratio w,/w, is small and the
chordwise positions of center of gravity and aerodynamic center are close
together.

In setting up flutter calculations, proper regard must be had both for
the structural complexity and for the suitable choice of aerodynamic
derivatives. Experience at lower flight speeds can serve as a guide in the
first instance. On lifting surfaces of the general shape and aspect ratio
dealt with here, what is acceptable aerodynamically depends on the Mach
number. Unadjusted, second-order piston theory appears valid between
about M =3 and M =5, and possibly to an upper limit fixed by the
size of Mt/c, where entropy changes and other distinctly hypersonic pheno-
mena prevent accurate prediction of the pressure distribution by piston
theory. Proceeding downward from M = 3, a two-dimensional adjust-
ment such as those proposed by Landahl®® and Van Dyke®" must first
be introduced. Finally, there will be Mach numbers above the transonic
range where only three-dimensional airloads, adjusted semi-empirically
for thickness effect, can yield satisfactory predictions for the purposes
of final design.
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DISCUSSION

G. H. Leg: Ishould like to ask whether the author has any information on the varia-
tion of thz subzcritical dam»ing with sp22d. In particular, is there any information on
the comparison between theory and test?

In a case with which I am familiar, for an aeroplane flying at high subsonic speeds,
there was a considerable discrepancy between the variation of damping with speed
as determined by calculation, by wind-tunnel test and by flight test, In this case, the
discrepancy was in the dangerous way, the calculations showing a gradual reduction
in damping with speed, the wind tunnel tests a moderately rapid reduction, and the
full-scale flight tests a very rapid reduction indezd; this resulted in the loss of an aero-
plane. Information on this matter may therefore be of considerable importance.

H. AsHLEy and J. R. MArRTUCCELLI: We made no measurements of variation of
subcritical damping with speed and made no calculations either.

At the higher Mach numbers, where the flutter occurred at higher u’s, we were working
in a region whose flight line and flutter boundary were roughly parallel.

bwg, Stable Flight poth
o Unsloble [
o \\——.—_

At M = 5.0 we actually obtained a sustained limited amplitude flutter at the lowest
possible p¢ which indicates that the boundary and flight path were roughly parallel.

J. WiLriams: Professor Ashley intimated that the onset of flutter was violent in
the experiments, Was the flutter simply spontaneous and did ‘“bumping’ make any
noticeable difference to the critical speed? Could Professor Ashley also commesnt on the
effects of changes in wing incidence setting?
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H. AsuLey and J. R. MartucceLii: Flutter was spontaneous in all cases.
I presume that “bumping” means to give model a jolt so as to initiate flutter. This
we never found necessary.

We did make two runs where we approached the flutter boundary very slowly, so
as to try and save the model after flutter began. We were able to do this and were able
to save the models. In both cases we tested the models again under the same tunnel
conditions, except that we made a normal time run and did not try to save model. The
results for the “slow” and “fast” runs were identical.

A. vaN DER NEUT: The models used were flexible in bending and torsion and
had negligible deformation in chordwise sense. For actual low aspect ratio wings this
deformation will be important. Would you expect, Dr. Ashley, that your conclusion
with the 2 degrees of freedom that available theory predicts flutter very well may be
extended to the case in which the chordwise deflections have to be accounted for?

H. AsHLey and J. R. MartucceLL: No, as based on our observations, but other
results suggest optimism on this point.

D. J. Jouns: Regarding the subject of choice of modes, are the authors aware of any
experimental evidence to suggest a coupling between the lifting surface modes of deforma-
tion (i.e. torsion and bending) and chordwise bending modes of single (or more) wing
skin panels. 1 am in fact suggesting that there may be a coupling between “classical”
wing flutter and panel flutter. Might not such a coupling explain the flutter observed
in the NACA hot jet experiments reported in the paper?

H. AsHrey and J. R. MarTUCCELLI: None.





